Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 678
Filter
1.
Microbes Infect ; : 105336, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38724001

ABSTRACT

Myeloid-derived suppressor cells (MDSCs) are a group of heterologous populations of immature bone marrow cells consisting of progenitor cells of macrophages, dendritic cells and granulocytes. Recent studies have revealed that the accumulation of MDSCs in the mouse spleen plays a pivotal role in suppressing the immune response following JEV infection. However, the mechanisms by which JEV induces MDSCs are poorly understood. Here, it was found that JEV infection induces mitochondrial damage and the release of mitochondrial DNA (mtDNA), which further leads to the activation of TLR9. TLR9 deficiency decreases the M-MDSCs population and their suppressive function both in vitro and in vivo. Moreover, the increase of MHCⅡ expression on antigen-presenting cells and CD28 expression on T cells in TLR9-/- mice was positively correlated with M-MDSCs reduction. Accordingly, the survival rate of TLR9-/- mice dramatically increased after JEV infection. These findings reveal the connections of mitochondrial damage and TLR9 activation to the induction of M-MDSCs during JEV infection.

2.
Appl Radiat Isot ; 209: 111333, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38704880

ABSTRACT

In the context of using aircraft as a pivotal tool for detecting radioactive hotspots, the acquisition of radioactivity data was conducted through a CeBr3 scintillation crystal detector mounted on a helicopter. However, challenges arose, including managing extensive data volumes, computationally demanding tasks, and susceptibility to local optima issues. To address these challenges and leverage the benefits of the Sparrow Search Algorithm (SSA) in global optimization and convergence speed, an improved SSA was devised. This improved version integrated SSA principles with the intricacies of searching for radioactive hotspots. The algorithm employed a matrix segmentation method to process data matrices derived from measured data, aiming to enhance efficiency and accuracy. An empirical analysis was conducted, performing 100 iterations on an experimental matrix to scrutinize the impact of matrix segmentation. Computation times and results were compared across different segmentation levels, confirming the favorable algorithmic outcomes of the method. The practical viability and convergence stability of the algorithm were further assessed using genuine measured data, with segmented matrices generated for evaluation. Remarkably, a comparison between computational outcomes and manually identified data reaffirmed the algorithm's reliability in effectively detecting radioactive hotspots.

3.
Adv Mater ; : e2403294, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38657281

ABSTRACT

High performance organic solar cells (OSCs) are usually realized by using post-treatment and/or additive, which can induce the formation of metastable morphology, leading to unfavorable device stability. In terms of the industrial production, the development of high efficiency as-cast OSCs is crucially important, but it remains a great challenge to obtain appropriate active layer morphology and high power conversion efficiency (PCE). Here, efficient as-cast OSCs are constructed via introducing a new polymer acceptor PY-TPT with a high dielectric constant into the D18:L8-BO blend to form a double-fibril network morphology. Besides, the incorporation of PY-TPT enables an enhanced dielectric constant and lower exciton binding energy of active layer. Therefore, efficient exciton dissociation and charge transport are realized in D18:L8-BO:PY-TPT-based device, affording a record-high PCE of 18.60% and excellent photostability in absence of post-treatment. Moreover, green solvent-processed devices, thick-film (300 nm) devices, and module (16.60 cm2) are fabricated, which show PCEs of 17.45%, 17.54%, and 13.84%, respectively. This work brings new insight into the construction of efficient as-cast devices, pushing forward the practical application of OSCs.

4.
Autophagy ; : 1-18, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38566321

ABSTRACT

Lyssaviruses are well-known worldwide and often cause fatal encephalitis. Previous studies have shown that autophagy is beneficial for the replication of rabies virus (RABV), the representative lyssavirus, but the detailed mechanism remains obscure. In this study, we showed that the rabies virus matrix protein (RABV-M) used its PPxY motif to interact with the E3 ubiquitin-protein ligase NEDD4. NEDD4 then recruited MAP1LC3/LC3 via its LC3-interacting region (LIR). Interestingly, after binding to the ubiquitinated RABV-M, NEDD4 could bind more LC3 and enhance autophagosome accumulation, while NEDD4 knockdown significantly reduced M-induced autophagosome accumulation. Further study revealed that RABV-M prevented autophagosome-lysosome fusion and facilitated viral budding. Inhibition of RABV-M-induced autophagosome accumulation reduced the production of extracellular virus-like particles. We also found that M proteins of most lyssaviruses share the same mechanism to accumulate autophagosome by hijacking NEDD4. Collectively, this study revealed a novel strategy for lyssaviruses to achieve efficient viral replication by exploiting the host autophagy system.Abbreviations: ABLV: Australian bat lyssavirus; ATG5: autophagy related 5; Baf A1:bafilomycin A1;co-IP: co-immunoprecipitation; CQ: chloroquine; DAPI:4',6-diamidino-2'-phenylindole; DMSO: dimethyl sulfoxide; EBLV:European bat lyssavirus; GFP: green fluorescent protein; GST:glutathione S-transferase; hpi: hours post-infection; hpt: hourspost-transfection; LIR: LC3-interactingregion;MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; mCherry:red fluorescent protein; MOI: multiplicity of infection; NC: negativecontrol; MVB: multivesicular body; NEDD4: neural precursorcell-expressed developmentally down-regulated 4; RABV: rabies virus;SQSTM1/p62: sequestosome 1; VLP: virus-like particle; VPS4B: vacuolarprotein sorting 4B; TEM: transmission electron microscopy; WB:western blotting; WT: wild-type; µm: micrometer; µM: micromole.

5.
Chemosphere ; 358: 142150, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38679174

ABSTRACT

Cycloxaprid, a new neonicotinoid pesticide, poses ecological risks, particularly in aquatic environments, due to its unique action and environmental dispersal. This study investigated the ecotoxicological effects of various concentrations of cycloxaprid on Penaeus vannamei over 28 days. High cycloxaprid levels significantly altered shrimp physiology, as shown by changes in the hepatosomatic index and fattening. Indicators of oxidative stress, such as increased serum hemocyanin, respiratory burst, and nitric oxide, as well as decreased phenol oxidase activity, were observed. Additionally, elevated activities of lactate dehydrogenase, succinate dehydrogenase, and isocitrate dehydrogenase indicated disrupted energy metabolism in the hepatopancreas. Notably, analyses of the nervous system revealed marked disturbances in neural signaling, as evidenced by elevated acetylcholine, octopamine, and acetylcholinesterase levels. Transcriptomic analysis highlighted significant effects on gene expression and metabolic processes in the hepatopancreas and nervous system. This study demonstrated that cycloxaprid disrupts neural signaling and oxidative balance in P. vannamei, potentially affecting its growth, and provides key insights into its biochemical and transcriptomic toxicity in aquatic systems.

6.
Sci Rep ; 14(1): 6120, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38480782

ABSTRACT

During the construction of deep vertical shafts, water inrush and flooding accidents are prone to occur, which seriously affect construction safety. Accurately determining the groundwater conditions is a prerequisite for effectively controlling water hazards and conducting risk management. In order to ensure the accuracy of the resistivity method in deep vertical well water exploration construction, a combination of indoor rock physics, mechanical testing, and on-site engineering measurements was used to analyze the influencing factors of granite resistivity. The corresponding relationship between resistivity and formation integrity was revealed, and water exploration experiments were conducted in the working face of deep underground mines. The results show that: (1) Rock resistivity is influenced by metallic minerals, saturation, temperature, ion content of fracture water, and joints. Regarding deep subsurface detection issues, the main factors affecting the detection results are water content and rock integrity. (2) During the loading process, rock resistivity exhibits significant stage response characteristics, which are closely related to rock integrity and damage accumulation. (3) A degradation model for aquifer zoning based on resistivity benchmark line was established. When the formation resistivity is higher than the benchmark line, it indicates a well-integrated formation with low water content. (4) Resistivity cloud maps and zoning degradation models can be used to visually determine and evaluate the occurrence status of formations and the effectiveness of grouting.

7.
J Biol Chem ; 300(4): 107168, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38490434

ABSTRACT

Lipids have been previously implicated in the lifecycle of neuroinvasive viruses. However, the role of lipids in programmed cell death and the relationship between programmed cell death and lipid droplets (LDs) in neuroinvasive virus infection remains unclear. Here, we found that the infection of neuroinvasive virus, such as rabies virus and encephalomyocarditis virus could enhance the LD formation in N2a cells, and decreasing LDs production by targeting diacylglycerol acyltransferase could suppress viral replication. The lipidomics analysis revealed that arachidonic acid (AA) was significantly increased after reducing LD formation by restricting diacylglycerol acyltransferase, and AA was further demonstrated to induce ferroptosis to inhibit neuroinvasive virus replication. Moreover, lipid peroxidation and viral replication inhibition could be significantly alleviated by a ferroptosis inhibitor, ferrostatin-1, indicating that AA affected neuroinvasive virus replication mainly through inducing ferroptosis. Furthermore, AA was demonstrated to activate the acyl-CoA synthetase long-chain family member 4-lysophosphatidylcholine acyltransferase 3-cytochrome P450 oxidoreductase axis to induce ferroptosis. Our findings highlight novel cross-talks among viral infection, LDs, and ferroptosis for the first time, providing a potential target for antiviral drug development.


Subject(s)
Arachidonic Acid , Ferroptosis , Lipid Droplets , Virus Replication , Ferroptosis/drug effects , Lipid Droplets/metabolism , Lipid Droplets/drug effects , Animals , Virus Replication/drug effects , Mice , Arachidonic Acid/metabolism , Arachidonic Acid/pharmacology , Encephalomyocarditis virus/drug effects , Diacylglycerol O-Acyltransferase/metabolism , Diacylglycerol O-Acyltransferase/antagonists & inhibitors , Lipid Peroxidation/drug effects , Coenzyme A Ligases/metabolism , Cell Line, Tumor , Humans
8.
Micromachines (Basel) ; 15(3)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38542607

ABSTRACT

To mitigate the impact of low-frequency noise from the tunnel magnetoresistance (TMR) current sensor and ambient stray magnetic fields on weak current detection accuracy, we propose a high-resolution modulation-demodulation test method. This method modulates and demodulates the measurement signal, shifting low-frequency noise to the high-frequency band for effective filtering, thereby isolating the target signal from the noise. In this study, we developed a Simulink model for the TMR current sensor modulation-demodulation test method. Practical time-domain and frequency-domain tests of the developed high-resolution modulation-demodulation method revealed that the TMR current sensor exhibits a nonlinearity as low as 0.045%, an enhanced signal-to-noise ratio (SNR) of 77 dB, and a heightened resolution of 100 nA. The findings indicate that this modulation-demodulation test method effectively reduces the impact of low-frequency noise on TMR current sensors and can be extended to other types of resistive devices.

9.
Huan Jing Ke Xue ; 45(3): 1629-1643, 2024 Mar 08.
Article in Chinese | MEDLINE | ID: mdl-38471875

ABSTRACT

Coal mining is the world's primary means of coping with an increasing energy demand. However, with the mining of coal, the regional ecosystem has been damaged to varying degrees, resulting in a decrease in the "carbon sink" capacity. Vegetation restoration is the basis for the restoration of degraded ecosystems and carbon sequestration functions in mining areas. However, no systematic studies have been conducted on the effects of vegetation restoration on soil organic carbon in coal mining areas on a global scale. Therefore, it is not possible to accurately predict the response of the global SOC pool to vegetation restoration. In this study, soil physicochemical properties of vegetation restoration were collected from 112 peer-reviewed articles to assess the effects of vegetation restoration type, soil depth, restoration year, mean annual temperature, annual precipitation, and elevation on soil organic carbon in coal mining areas and to identify relevant key drivers. The results showed that the damaged coal mine area could significantly improve the physicochemical properties of the soil through vegetation restoration. The restored soils had 39.02% higher SOC reserves compared to that in unrestored or naturally restored soils. When environmental factors were not considered, the vegetation restoration types that were favorable for SOC stock accumulation were cropland > woodland > grassland > shrubland. All four types of vegetation restoration significantly increased the SOC storage in the surface layer (0-20 cm). Grassland and shrubs significantly increased SOC storage at depth (>40 cm), whereas SOC storage at depth under woodland and farmland types was not significantly different from SOC storage after unrestored or natural restoration. The increasing trend of SOC storage after vegetation restoration decreased with increasing soil depth. The specific vegetation restoration strategy should select the appropriate vegetation type according to the climatic conditions. The types of vegetation restoration with higher carbon sequestration effects in damaged coal mining areas with mean annual temperature <0℃ and mean annual precipitation <500 mm were grassland or shrubland. In contrast, woodland and cropland restoration types could better increase SOC storage in environments with mean annual temperature >15℃ and annual precipitation >800 mm. TN, BD, AN, and AK were the main factors influencing the ability to affect soil carbon sequestration. This study can provide a theoretical reference for quantifying the carbon sequestration effects of different vegetation restoration measures in damaged coal mining areas and the restoration and reconstruction of degraded ecosystems.

10.
Heliyon ; 10(5): e26720, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38455579

ABSTRACT

There are two cultivated and weedy types of Perilla crop (TCWTPC), and they are widely distributed and cultivated in East Asia, especially in South Korea and Japan. The objective of this study is to create simple sequence repeat (SSR) markers linked to morphological traits that show differences between accessions of the TCWTPC using recently designed SSR primer sets in Perilla crop. Genetic diversity within 52 accessions of the TCWTPC, gathered from South Korea, was assessed using 28 novel Perilla SSR primer sets. Based on the assessment, a collection of 28 Perilla SSR primer sets were shown to exhibit polymorphism and yielded a total of 142 alleles across the 52 accessions of the TCWTPC. Through inspection of a phylogenetic tree and population structure, the 52 accessions of the TCWTPC were classified into three major groups. Although most accessions of the TCWTPC were relatively clearly distinguished, SSR markers failed to distinguish several accessions belonging to the two weedy types of the Perilla crop. By using an association mapping analysis (AMA) of the 28 Perilla SSR markers and seven morphological characteristics in the 52 TCWTPC accessions, we detected that three of the Perilla SSR markers (KNUPF134, KNUPF137, KNUPF149) were associated with plant and seed characteristics. The novel SSR primer sets developed in Perilla crop should be useful in AMA for assessing genetic diversity and relationships between and within TCWTPC accessions, and this information will be helpful for genetic mapping in breeding programs for Perilla crop.

11.
Ecotoxicol Environ Saf ; 273: 116153, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38422790

ABSTRACT

Microplastics have emerged as significant and concerning pollutants within soil ecosystems. Among the soil biota, entomopathogenic nematodes (EPNs) are lethal parasites of arthropods, and are considered among the most effective biological agents against pests. Infective juveniles (IJs) of EPNs, as they navigate the soil matrix scavenging for arthropod hosts to infect, they could potentially encounter microplastics. Howver, the impact of microplastics on EPNs has not been fully elucidated yet. We addressed this gap by subjecting Steinernema feltiae EPNs to polystyrene microplastics (PS-MPs) with various sizes, concentrations, and exposure durations. After confirming PS-MP ingestion by S. feltiae using fluorescent dyes, we found that the PS-MPs reduced the survival, reproduction, and pathogenicity of the tested EPNs, with effects intensifying for smaller PS-MPs (0.1-1 µm) at higher concentrations (105 µg/L). Furthermore, exposure to PS-MPs triggered oxidative stress in S. feltiae, leading to increased reactive oxygen species levels, compromised mitochondrial membrane potential, and increased antioxidative enzyme activity. Furthermore, transcriptome analyses revealed PS-MP-induced suppression of mitochondrial function and oxidative phosphorylation pathways. In conclusion, we show that ingestion of PS-MPs by EPNs can compromise their fitness, due to multple toxicity effects. Our results bear far-reaching consequences, as the presence of microplastics in soil ecosystems could undermine the ecological role of EPNs in regulating pest populations.


Subject(s)
Arthropods , Rhabditida , Animals , Microplastics/toxicity , Plastics/toxicity , Virulence , Ecosystem , Pest Control, Biological , Rhabditida/physiology , Polystyrenes/toxicity , Oxidative Stress , Reproduction , Antioxidants , Soil
12.
Adv Mater ; : e2313532, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38386402

ABSTRACT

Developing efficient organic solar cells (OSCs) with thick active layers is crucial for roll-to-roll printing. However, thicker layers often result in lower efficiency. This study tackles this challenge using a polymer adsorption strategy combined with a layer-by-layer approach. Incorporating insulator polystyrene (PS) into the PM6:L8-BO system creates PM6+PS:L8-BO blends, effectively suppressing trap states and extending exciton diffusion length in the mixed donor domain. Adding insulating polymers with benzene rings to the donor enhances π-π stacking of donors, boosting intermolecular interactions and electron wave function overlap. This results in more orderly molecular stacking, longer exciton lifetimes, and higher diffusion lengths. The promoted long-range exciton diffusion leads to high power conversion efficiencies of 19.05% and 18.15% for PM6+PS:L8-BO blend films with 100 and 300 nm thickness, respectively, as well as a respectable 16.00% for 500 nm. These insights guide material selection for better exciton diffusion, and offer a method for thick-film OSC fabrication, promoting a prosperous future for practical OSC mass production.

13.
PLoS One ; 19(2): e0297634, 2024.
Article in English | MEDLINE | ID: mdl-38408088

ABSTRACT

PURPOSE: The anterior flange height of the current femoral component increases with an increasing distal femoral anteroposterior dimension. During total knee arthroplasty (TKA), we have observed that a large femur may have a thinner anterior condyle, whereas a small femur may have a thicker anterior condyle. The first purpose of this study was to examine whether the femoral anterior condyle height decreases as the distal femoral anteroposterior size increases and whether gender differences exist in anterior condyle height. METHODS: A total of 1218 knees undergoing TKA intraoperative and computed tomography scans from 303 healthy knees were used to measure the anterior lateral condylar height (ALCH), anterior medial condylar height (AMCH), and the lateral anteroposterior (LAP) and medial anteroposterior (MAP) dimensions of distal femurs. The LAP and MAP measurements were used for adjustments to determine whether gender differences exist in anterior condyle heights. Linear regression analysis was performed to determine correlations between ALCH and LAP or between AMCH and MAP. RESULTS: There were significant differences between males and females in ALCH in both the CT and TKA groups and AMCH in the CT group (all P<0.01). After adjusting for LAP and MAP, there were significant gender differences in the lateral and medial condylar heights in both groups (P<0.01). There were significant negative correlations between ALCH and LAP values and between AMCH and MAP values in both CT and TKA measurements, with the LAP and MAP values increasing as ALCH and AMCH decreased. CONCLUSIONS: The results demonstrate that femoral anterior condylar height decreased with increasing anteroposterior dimension in both the medial and lateral condyle. In addition, this study also showed that anterior condylar heights are highly variable, with gender differences. The data may provide an important reference for designing femoral anterior flange thickness to precisely match the natural anterior condylar anatomy.


Subject(s)
Arthroplasty, Replacement, Knee , Male , Female , Humans , Knee Joint/diagnostic imaging , Knee Joint/surgery , Knee Joint/anatomy & histology , Knee/surgery , Femur/surgery , Tomography, X-Ray Computed
14.
Nat Commun ; 15(1): 1566, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38378699

ABSTRACT

Two-dimensional (2D) transition metal nitrides and carbides (MXenes), represented by Ti3C2Tx, have broad applications in flexible electronics, electromechanical devices, and structural membranes due to their unique physical and chemical properties. Despite the Young's modulus of 2D Ti3C2Tx has been theoretically predicted to be 0.502 TPa, which has not been experimentally confirmed so far due to the measurement is extremely restricted. Here, by optimizing the sample preparation, cutting, and transfer protocols, we perform the direct in-situ tensile tests on monolayer Ti3C2Tx nanosheets using nanomechanical push-to-pull equipment under a scanning electron microscope. The effective Young's modulus is 0.484 ± 0.013 TPa, which is much closer to the theoretical value of 0.502 TPa than the previously reported 0.33 TPa by the disputed nanoindentation method, and the measured elastic stiffness is ~948 N/m. Moreover, during the process of tensile loading, the monolayer Ti3C2Tx shows an average elastic strain of ~3.2% and a tensile strength as large as ~15.4 GPa. This work corrects the previous reports by nanoindentation method and demonstrates that the Ti3C2Tx indeed keeps immense potential for broad range of applications.

15.
mBio ; 15(3): e0288023, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38349129

ABSTRACT

Infection with neurotropic viruses may result in changes in host behavior, which are closely associated with degenerative changes in neurons. The lyssavirus genus comprises highly neurotropic viruses, including the rabies virus (RABV), which has been shown to induce degenerative changes in neurons, marked by the self-destruction of axons. The underlying mechanism by which the RABV degrades neuronal cytoskeletal proteins remains incomplete. In this study, we show that infection with RABV or overexpression of its M protein can disrupt mitochondrial metabolism by binding to Slc25a4. This leads to a reduction in NAD+ production and a subsequent influx of Ca2+ from the endoplasmic reticulum and mitochondria into the cytoplasm of neuronal cell lines, activating Ca2+-dependent proteinase calpains that degrade α-tubulin. We further screened the M proteins of different lyssaviruses and discovered that the M protein of the dog-derived RABV strain (DRV) does not degrade α-tubulin. Sequence analysis of the DRV M protein and that of the lab-attenuated RABV strain CVS revealed that the 57th amino acid is vital for M-induced microtubule degradation. We generated a recombinant RABV with a mutation at the 57th amino acid position in its M protein and showed that this mutation reduces α-tubulin degradation in vitro and axonal degeneration in vivo. This study elucidates the mechanism by which lyssavirus induces neuron degeneration.IMPORTANCEPrevious studies have suggested that RABV (rabies virus, the representative of lyssavirus) infection induces structural abnormalities in neurons. But there are few articles on the mechanism of lyssavirus' effect on neurons, and the mechanism of how RABV infection induces neurological dysfunction remains incomplete. The M protein of lyssavirus can downregulate cellular ATP levels by interacting with Slc25a4, and this decrease in ATP leads to a decrease in the level of NAD+ in the cytosol, which results in the release of Ca2+ from the intracellular calcium pool, the endoplasmic reticulum, and mitochondria. The presence of large amounts of Ca2+ in the cytoplasm activates Ca2+-dependent proteases and degrades microtubule proteins. The amino acid 57 of M protein is the key site determining its disruption of mitochondrial metabolism and subsequent neuron degeneration.


Subject(s)
Lyssavirus , Rabies virus , Rabies , Animals , Dogs , Lyssavirus/genetics , Tubulin/metabolism , NAD/metabolism , Rabies virus/genetics , Rabies virus/metabolism , Rabies/metabolism , Neurons , Microtubules/metabolism , Mitochondria/metabolism , Amino Acids/metabolism , Nerve Degeneration/metabolism , Adenosine Triphosphate/metabolism
16.
Int J Biol Macromol ; 262(Pt 1): 129731, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38278394

ABSTRACT

Human brain microvascular endothelial cells (hBMECs) are the main component cells of the blood-brain barrier (BBB) and play a crucial role in responding to viral infections to prevent the central nervous system (CNS) from viral invasion. Interferon-inducible transmembrane protein 1 (IFITM1) is a multifunctional membrane protein downstream of type-I interferon. In this study, we discovered that hIFITM1 expression was highly upregulated in hBMECs during Japanese encephalitis virus (JEV) infection. Depletion of hIFITM1 with CRISPR/Cas9 in hBMECs enhanced JEV replication, while overexpression of hIFITM1 restricted the viruses. Additionally, overexpression of hIFITM1 promoted the monolayer formation of hBMECs with a better integrity and a higher transendothelial electrical resistance (TEER), and reduced the penetration of JEV across the BBB. However, the function of hIFITM1 is governed by palmitoylation. Mutations of palmitoylation residues in conserved CD225 domain of hIFITM1 impaired its antiviral capacity. Moreover, mutants retained hIFITM1 in the cytoplasm and lessened its interaction with tight junction protein Occludin. Taken together, palmitoylation of hIFITM1 is essential for its antiviral activity in hBMECs, and more notably, for the maintenance of BBB homeostasis.


Subject(s)
Encephalitis Virus, Japanese , Encephalitis, Japanese , Humans , Blood-Brain Barrier/metabolism , Encephalitis Virus, Japanese/genetics , Endothelial Cells/metabolism , Lipoylation , Encephalitis, Japanese/genetics , Antiviral Agents/metabolism , Interferons/metabolism
17.
Vet Microbiol ; 290: 109978, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38185071

ABSTRACT

Recently, herpesvirus viral vectors that stimulate strong humoral and cellular immunity have been demonstrated to be the most promising platforms for the development of multivalent vaccines, because they contain various nonessential genes and exhibit long-life latency characteristics. Previously, we showed that the feline herpesvirus-1 (FHV-1) mutant WH2020-ΔTK/gI/gE, which was safe for felines and provided efficacious protection against FHV-1 challenge, can be used as a vaccine vector. Moreover, previous studies have shown that the major neutralizing epitope VP2 protein of feline parvovirus (FPV) can elicit high levels of neutralizing antibodies. Therefore, to develop a bivalent vaccine against FPV and FHV-1, we first generated a novel recombinant virus by CRISPR/Cas9-mediated homologous recombination, WH2020-ΔTK/gI/gE-VP2, which expresses the VP2 protein of FPV. The growth characteristics of WH2020-ΔTK/gI/gE-VP2 were similar to those of WH2020-ΔTK/gI/gE, and WH2020-ΔTK/gI/gE-VP2 was stable for at least 30 generations in CRFK cells. As expected, we found that the felines immunized with WH2020-ΔTK/gI/gE-VP2 produced FPV-neutralizing antibody titers (27.5) above the positive cutoff (26) on day 14 after single inoculation. More importantly, recombinant WH2020-ΔTK/gI/gE-VP2 exhibited severely impaired pathogenicity in inoculated and cohabiting cats. The kittens immunized with WH2020-ΔTK/gI/gE and WH2020-ΔTK/gI/gE-VP2 produced similar levels of FHV-specific antibodies and IFN-ß. Furthermore, felines immunized with WH2020-ΔTK/gI/gE-VP2 were protected against challenge with FPV and FHV-1. These data showed that WH2020-ΔTK/gI/gE-VP2 appears to be a potentially safe, effective, and economical bivalent vaccine against FPV and FHV-1 and that WH2020-ΔTK/gI/gE can be used as a viral vector to develop feline multivalent vaccines.


Subject(s)
Varicellovirus , Viral Vaccines , Animals , Cats , Female , Feline Panleukopenia Virus/genetics , Varicellovirus/genetics , Antibodies, Neutralizing , Vaccines, Combined , Antibodies, Viral
18.
Emerg Microbes Infect ; 13(1): 2300461, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38164714

ABSTRACT

During the COVID-19 epidemic, the incidence of rabies has increased in several countries, especially in remote and disadvantaged areas, due to inadequate surveillance and declining immunization coverage. Multiple vaccinations with inactivated rabies virus vaccines for pre- or post-exposure prophylaxis are considered inefficient, expensive and impractical in developing countries. Herein, three modified human recombinant adenoviruses type 5 designated Adv-RVG, Adv-E1-RVG, and Adv-RVDG, carrying rabies virus G (RVG) expression cassettes in various combinations within E1 or E3 genomic regions, were constructed to serve as rabies vaccine candidates. Adv-RVDG mediated greater RVG expression both in vitro and in vivo and induced a more robust and durable humoral immune response than the rabies vaccine strain SAD-L16, Adv-RVG, and Adv-E1-RVG by more effectively activating the dendritic cells (DCs) - follicular helper T (Tfh) cells - germinal centre (GC) / memory B cells (MBCs) - long-lived plasma cells (LLPCs) axis with 100% survival after a lethal RABV challenge in mice during the 24-week study period. Similarly, dogs and cats immunized with Adv-RVDG showed stronger and longer-lasting antibody responses than those vaccinated with a commercial inactivated rabies vaccine and showed good tolerance to Adv-RVDG. In conclusion, our study demonstrated that simultaneous insertion of protective antigens into the E1 and E3 genomic regions of adenovirus vector can significantly enhance the immunogenicity of adenoviral-vectored vaccines, providing a theoretical and practical basis for the subsequent development of multivalent and multi-conjugated vaccines using recombinant adenovirus platform. Meanwhile, our data suggest Adv-RVDG is a safe, efficient, and economical vaccine for mass-coverage immunization.


Subject(s)
Cat Diseases , Dog Diseases , Rabies Vaccines , Rabies virus , Cats , Dogs , Humans , Animals , Mice , Rabies virus/genetics , Rabies Vaccines/genetics , Immunity, Humoral , Antibodies, Viral , Adenoviridae/genetics
19.
Nat Commun ; 15(1): 720, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38267404

ABSTRACT

Developing in situ/operando spectroscopic techniques with high sensitivity and reproducibility is of great importance for mechanistic investigations of surface-mediated electrochemical reactions. Herein, we report the fabrication of highly ordered rhombic gold nanocube superlattices (GNSs) as substrates for surface-enhanced infrared absorption spectroscopy (SEIRAS) with significantly enhanced SEIRA effect, which can be controlled by manipulating the randomness of GNSs. Finite difference time domain simulations reveal that the electromagnetic effect accounts for the significantly improved spectroscopic vibrations on the GNSs. In situ SEIRAS results show that the vibrations of CO on the Cu2O surfaces have been enhanced by 2.4 ± 0.5 and 18.0 ± 1.3 times using GNSs as substrates compared to those on traditional chemically deposited gold films in acidic and neutral electrolytes, respectively. Combined with isotopic labeling experiments, the reaction mechanisms for C-C coupling of CO electroreduction on Cu-based catalysts are revealed using the GNSs substrates.

20.
mBio ; 15(1): e0177523, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38078742

ABSTRACT

IMPORTANCE: messenger RNA (mRNA) vaccines are a key technology in combating existing and emerging infectious diseases. However, the inherent instability of mRNA and the nonspecificity of lipid nanoparticle-encapsulated (LNP) delivery systems result in the need for cold storage and a relatively short-duration immune response to mRNA vaccines. Herein, we develop a novel vaccine in the form of circRNAs encapsulated in LNPs, and the circular structure of the circRNAs enhances their stability. Lyophilization is considered the most effective method for the long-term preservation of RNA vaccines. However, this process may result in irreversible damage to the nanoparticles, particularly the potential disruption of targeting modifications on LNPs. During the selection of lymph node-targeting ligands, we found that LNPs modified with mannose maintained their physical properties almost unchanged after lyophilization. Additionally, the targeting specificity and immunogenicity remained unaffected. In contrast, even with the addition of cryoprotectants such as sucrose, the physical properties of LNPs were impaired, leading to an obvious decrease in immunogenicity. This may be attributed to the protective role of mannose on the surface of LNPs during lyophilization. Freshly prepared and lyophilized mLNP-circRNA vaccines elicited comparable immune responses in both the rabies virus model and the SARS-CoV-2 model. Our data demonstrated that mLNP-circRNA vaccines elicit robust immune responses while improving stability after lyophilization, with no compromise in tissue targeting specificity. Therefore, mannose-modified LNP-circRNA vaccines represent a promising vaccine design strategy.


Subject(s)
RNA, Circular , Vaccines , Mannose/chemistry , Vaccines/genetics , Immunity , Freeze Drying , RNA, Messenger/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...